Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Neurol Sci ; 43(9): 5553-5562, 2022 Sep.
Article En | MEDLINE | ID: mdl-35759065

OBJECTIVES: To investigate the relationship between N20-P25 peak-to-peak amplitude (N20p-P25p) of somatosensory evoked potentials (SEPs) and the occurrence of abnormalities of the peripheral and/or central sensory pathways and of myoclonus/epilepsy, in 308 patients with increased SEPs amplitude from upper limb stimulation. METHODS: We compared cortical response (N20p-P25p) in different groups of patients identified by demographic, clinical, and neurophysiological factors and performed a cluster analysis for classifying the natural occurrence of subgroups of patients. RESULTS: No significant differences of N20p-P25p were found among different age-dependent groups, and in patients with or without PNS/CNS abnormalities of sensory pathways, while myoclonic/epileptic patients showed higher N20p-P25p than other groups. Cluster analysis identified four clusters of patients including myoclonus/epilepsy, central sensory abnormalities, peripheral sensory abnormalities, and absence of myoclonus and sensory abnormalities. CONCLUSIONS: Increased N20p-P25p prompts different possible pathophysiological substrates: larger N20p-P25p in patients with cortical myoclonus and/or epilepsy is likely sustained by strong cortical hyperexcitability, while milder increase of N20p-P25p could be underpinned by plastic cortical changes following abnormalities of sensory pathways, or degenerative process involving the cortex. SEPs increased in amplitude cannot be considered an exclusive hallmark of myoclonus/epilepsy. Indeed, in several neurological disorders, it may represent a sign of adaptive, plastic, and/or degenerative cortical changes.


Epilepsies, Myoclonic , Epilepsy , Myoclonus , Electroencephalography , Evoked Potentials, Somatosensory/physiology , Humans , Median Nerve , Somatosensory Cortex/physiology
...